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Abstract

With the advent of Large Language Models (LLMs), the potential of Retrieval
Augmented Generation (RAG) techniques have garnered considerable research
attention. Numerous novel algorithms and models have been introduced to enhance
various aspects of RAG systems. However, the absence of a standardized framework
for implementation, coupled with the inherently intricate RAG process, makes it
challenging and time-consuming for researchers to compare and evaluate these
approaches in a consistent environment. Existing RAG toolkits like LangChain
and LlamaIndex, while available, are often heavy and unwieldy, failing to
meet the personalized needs of researchers. In response to this challenge, we
propose FlashRAG, an efficient and modular open-source toolkit designed to assist
researchers in reproducing existing RAG methods and in developing their own
RAG algorithms within a unified framework. Our toolkit implements 12 advanced
RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit
has various features, including customizable modular framework, rich collection
of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-
processing scripts, and extensive and standard evaluation metrics. Our toolkit and
resources are available at https://github.com/RUC-NLPIR/FlashRAG.

1 Introduction

In the era of large language models (LLMs), retrieval-augmented generation (RAG) [1, 2] has
emerged as a robust solution to mitigate hallucination issues in LLMs by leveraging external
knowledge bases [3]. The substantial applications and the potential of RAG technology have
attracted considerable research attention. With the introduction of a large number of new algorithms
and models to improve various facets of RAG systems in recent years, comparing and evaluating
these methods under a consistent setting has become increasingly challenging.

Many works are not open-source or have fixed settings in their open-source code, making it difficult
to adapt to new data or innovative components. Besides, the datasets and retrieval corpus used often
vary, with resources being scattered, which can lead researchers to spend excessive time on pre-
processing steps instead of focusing on optimizing their methods. Furthermore, due to the complexity
of RAG systems, involving multiple steps such as indexing, retrieval, and generation, researchers
often need to implement many parts of the system themselves. Although there are some existing RAG
toolkits like LangChain [4] and LlamaIndex [5], they are typically large and cumbersome, hindering
researchers from implementing customized processes and failing to address the aforementioned issues.
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Thus, a unified, researcher-oriented RAG toolkit is urgently needed to streamline methodological
development and comparative studies.

To address the issue mentioned above, we introduce FlashRAG, an open-source library designed to
enable researchers to easily reproduce existing RAG methods and develop their own RAG algorithms.
This library allows researchers to utilize built pipelines to replicate existing work, employ provided
RAG components to construct their own RAG processes, or simply use organized datasets and corpora
to accelerate their own RAG workflow. Compared to existing RAG toolkits, FlashRAG is more suited
for researchers. To summarize, the key features and capabilities of our FlashRAG library can be
outlined in the following four aspects:

Extensive and Customizable Modular RAG Framework. To facilitate an easily expandable
RAG process, we implemented modular RAG at two levels. At the component level, we offer
comprehensive RAG components, including 13 components across four major categories: judger,
retriever, refiner, and generator. These components can be used individually in one’s code or
combined to form a cohesive pipeline. At the pipeline level, after reviewing the current state of
RAG development, we implemented 8 common RAG processes. Based on this framework, existing
methods can be easily replicated, and RAG processes can be run and evaluated under different
settings.

Pre-Implemented advanced RAG algorithms. To our knowledge, the implementation of existing
work provided by FlashRAG is the most extensive. So far, based on our framework, we have
implemented 12 advanced RAG algorithms, such as Self-RAG and FLARE, covering Sequential RAG,
Conditional RAG, Branching RAG, and Loop RAG categories. These methods have been evaluated
under a unified setting, and a benchmark report is available. With our framework, researchers can
easily evaluate these methods under various settings and fairly compare them with their own methods,
enhancing overall reproducibility. More methods are planned to be incorporated into our library.

Comprehensive benchmark datasets. To improve the consistency and reusability of datasets in
RAG research, we have compiled 32 common RAG benchmark datasets and preprocessed them
into a unified format. Some of these datasets, such as asqa and wikiasp, have undergone specific
adjustments for RAG scenarios to ensure consistency. We have hosted these datasets on the Hugging
Face platform for easy access and use.

Efficient Helping Scripts for RAG. To minimize the setup time in RAG experiments, we offer
a comprehensive suite of helping scripts, including downloading and slicing Wikipedia for corpus
creation, building indexes for retrieval, and prepare retrieval results in advance. These steps are
important for the subsequent process, but they are often tedious and can take up a lot of time. Our user-
friendly scripts are designed to be intuitive, ensuring researchers can easily navigate the preparatory
stages of RAG-related research.

2 Related work

The RAG process often involves various components and complex preliminary handling (such as
constructing corpus and building indexes). Due to the lack of a dedicated RAG library for research,
most open-source codes tend to use their preferred implementation and entail intricate environment
configurations. Therefore, it is often time-consuming to run others’ code and difficult to migrate to
your own settings. Simultaneously, the processing and use of datasets and corpus lack standardization,
enhancing the challenge of making a fair comparison between oneself and existing methods.

In recent years, numerous open-source toolkits pertaining to RAG have been developed, providing
rich RAG components. Langchain [4], LlamaIndex [5], and Haystack [6] are among the widely
adopted works. These libraries provide a range of advanced APIs related to LLM, such as vector
databases and embedding models, which greatly streamline the interaction with LLM and facilitate
running a RAG process effortlessly. Despite the many advantages, these libraries lack support for
researchers. On one hand, they tend to overlook the implementation of existing works including
methods, widely used retrieval corpus, and benchmark datasets. On the other hand, they are often too
hefty and heavily encapsulated, obscuring operational details or necessitating complex document
searches, thereby lacking flexibility for customization.

Given these issues, several specialized toolkits for RAG have been introduced that are lighter and
more customizable. For instance, FastRAG [7] optimizes based on Haystack’s api and provides a
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Table 1: Comparison with other RAG toolkits. Modular Component refers to whether the toolkit is
composed of modular components. Automatic Evaluation indicates if the toolkit provides automated
evaluation capabilities to assess the performance of various datasets. Corpus Helper shows if the
toolkit offers auxiliary tools for processing corpus, including cleaning and chunking.

Toolkit Modular Component Automatic Evaluation Corpus Helper # Provided Dataset # Support Work
Langchain [4] ✓ ✗ ✓ - 2
LlamaIndex [5] ✓ ✓ ✓ - 2
Haystack [6] ✓ ✓ ✗ - -
FastRAG [7] ✓ ✗ ✗ 2 1
LocalRQA [8] ✗ ✓ ✗ 3 -
AutoRAG [9] ✓ ✓ ✗ 4 -
FlashRAG (ours) ✓ ✓ ✓ 32 12

limited number of support methods and benchmark datasets. LocalRQA [8] focuses on the training
stage in the RAG process, providing comprehensive scripts for training various components (such
as retrievers, generators) that might be involved in the RAG process during research. AutoRAG [9]
adopts a similar design philosophy to ours, implementing modular RAG process. This library
represents each component in RAG as a node, and the RAG process is achieved by connecting the
nodes. Although AutoRAG encompasses a variety of evaluation metrics and benchmarks, it falls short
concerning the direct implementation of existing works. Therefore, in our library, we have not only
designed an exhaustive assortment of RAG components to implement a wide array of RAG processes
but also implemented various RAG works so that the effects of existing works under various settings
can be replicated directly with a few lines of code. Furthermore, we offer a wealth of resources,
including a large number of processed datasets, scripts for obtaining and pre-processing widely-used
corpus, among others, to expedite researchers’ preparation time as much as possible.

3 The Toolkit: FlashRAG

The FlashRAG is designed to facilitate RAG-related research for researchers. As depicted in Figure 1,
the overall structure of the FlashRAG toolkit comprises three hierarchical modules: the environment
module, the component module, and the pipeline module. The environment module is fundamental to
the toolkit, establishing the requisite datasets, hyperparameters, and evaluation metrics necessary for
experimentation. Building upon the environment module, the component module consists of various
RAG components, each endowed with its specific role (e.g., retrieval and generation). The pipeline
module synthesizes an assortment of component modules with the purpose of effectuating a complete
RAG process. In this paper, we will introduce the component and pipeline modules. Additional
details are available in the documentation of our library.

3.1 Component Module

The Component Module consolidates all elements involved in the RAG process into a unified
framework. Each component is equipped with autonomous functionality, enabling standalone
application. Currently, the Component Module encompasses five main components: Judger, Retriever,
Reranker, Refiner, and Generator.

Judger functions as a preliminary component that assesses whether a query necessitates retrieval.
Given the limited work and models in this domain, we presently offer a judger based on the SKR [10]
method, which determines the necessity of retrieval using a curated set of LLM self-knowledge data.

Retriever implementations are extensively covered by our toolkit. For sparse retrieval, we have
integrated the Pyserini library [11] to facilitate the BM25 method. For dense retrieval, we provide
support for various BERT-based embedding models such as DPR [12], E5 [13] and BGE [14].
FlashRAG also support models based on the T5 architecture like ANCE [15]. We employ FAISS [16,
17] for vector database computations to ensure retrieval efficiency and utilize the HuggingFace’s
datasets library to enhance corpus loading speed.

To enhance the reusability of retrieval results and accommodate non-open source retrievers, our library
supports the use of pre-retrieved results termed "retrieval cache". During each retrieval instance,
the system automatically searches the retrieval cache for relevant results using the current query,
presenting them as the return value. Using our retrievers, user can set automatic saving of retrieval

3



Data

DatasetZoo

Question 

Answering 

Multiple 

Choice

Fact 

Verification

Entity 

Linking

Dialog 

Generation

Other 

Datasets

CorpusZoo

Wikipedia

MS MARCO

Pre-

processing

Scripts

Basic 

Components

Embedding 

Models

Retriever

T5-Based 

Encoders

BM25 

Retriever

Reranker

Cross-

Encoder

Embedding 

Models

Encoder-Decoder 

Generator

Generator

vllm Generator FastChat Generator

Decoder-Only 

Generator

Judger

Abstractive 

Refiner

Refiner

LLMLingua Refiner
SelectiveContext 

Refiner

RECOMP 

Refiner

Extractive 

Refiner

SKR Judger

Pipelines
Sequential 

Pipeline

Conditional 

Pipeline

Branching 

Pipeline

Iterative 

Pipeline
Loop Pipeline… …

Environment Config File Parameter Dict Evaluation Module

Figure 1: An overview of the FlashRAG toolkit.

caches as JSONL files for future use. For non-open source retrievers, user can format the retrieval
results to fit our cache structure for loading.

Reranker aims at refining the order of results returned by the retriever to enhance retrieval accuracy.
Currently, FlashRAG supports a variety of widely-used Cross-Encoder models, such as the bge-
reranker and jina-reranker. In scenarios where embedding models are used for reranking (e.g.,
employing BM25 as the retriever), we also facilitate the use of Bi-Encoder models like E5 as
rerankers. In practice, the reranker is integrated into the retriever’s retrieval function via a decorator,
enabling seamless combination with any retriever. Users can assemble any retriever and reranker
with just one line of code.

Refiner refines the input text for generators to reduce token usage and reduce noise from retrieved
documents, improving the final RAG responses. Serving as an essential part of the RAG process,
various studies focus on developing superior refinements. We have reviewed the existing literature
and implemented four types of refiners, each performing differently in handling retrieved documents.
The Extractive Refiner employs an embedding model to extract semantic units, like sentences or
phrases, from the retrieved text that hold higher semantic similarity with the query. The Abstractive
Refiner utilizes a seq2seq model to directly summarize the retrieved text, supporting dedicated models
like RECOMP [18], as well as the general summarizer models with similar structures available
on HuggingFace. Furthermore, we also facilitate the use of LLMLingua [19, 20] Refiner and
Selective-Context [21] Refiner, both perplexity-based refiners.

Generator is the final component in the RAG process, thoroughly covered within our toolkit. In
the generator module, we’ve integrated two leading LLM acceleration libraries, vllm [22] and
FastChat [23], hence, a myriad of mainstream LLMs are supported. Furthermore, we provide the
native interface of the Transformers library [24] to enhance robustness. We also support various
encoder-decoder models, such as Flan-T5 [25]. For these models, we facilitate the use of Fusion in
Decoder (FiD) techniques [26], further optimizing efficiency when dealing with retrieved documents.

3.2 Pipeline Module

Building on the diverse components outlined earlier, we are able to decouple the algorithmic flow of
the RAG process from the specific implementations of each component, facilitating the assembly
of the entire pipeline. The entire pipeline processes the dataset provided by the user, executes the
corresponding RAG process on it, and delivers both the final evaluation outcomes and intermediate
results. In constructing the pipeline, one only needs to consider which components are required for
the entire RAG process and the logic of data flow between these components. Specifically, within
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each pipeline, it is necessary to load the required components in the init(.) function and implement
the corresponding logic in the run(.) function according to each component’s interface.

To systematically execute the operational logic of various RAG tasks, we conducted an in-depth survey
of RAG-related literature. Drawing on the summaries from the RAG survey [27], we categorized all
RAG process flows into four types: Sequential, Branching, Conditional, and Loop. So far, we have
implemented 8 different pipelines, covering a range of advancing RAG works.

Sequential Pipeline implements a linear execution path for the query, formally represented as query
-> retriever -> post-retrieval (reranker, refiner) -> generator. Once the user has configured their
settings, the library automatically loads the necessary components along with their corresponding
process logic.

Branching Pipeline executes multiple paths in parallel for a single query (often one path per
retrieved document) and merges the results from all paths to form the ultimate output. Currently, our
library supports two advancing branching methods: REPLUG pipeline [28] and SuRe pipeline [29].
The REPLUG pipeline processes each retrieved document in parallel and combines the generation
probabilities from all documents to produce the final answer. The SuRe pipeline generates a candidate
answer from each retrieved document and then ranks all candidate answers. In implementing SuRe,
we adhere to the original paper’s prompt and processing flow to ensure accuracy and comparability
of the results.

Conditional Pipeline utilizes a judger to direct the query into different execution paths based on the
judgement outcome. In the current framework, queries deemed in need of retrieval are sent into the
normal sequential process, while the rest bypass retrieval and proceed directly to generation. We offer
utility functions to split and merge the input dataset based on the judger’s determination, ensuring that
all processing can be conducted in batches, which enhances the efficiency of the pipeline. Moreover,
the conditional pipeline supports integration with various types of pipelines, meaning it can execute
different pipelines for queries based on different judger outcomes.

Loop Pipeline involves complex interactions between retrieval and generation processes, often
encompassing multiple cycles of retrieval and generation. Compared to the previous three types
of pipelines, this type offers greater flexibility and improved outcomes. We support four widely
recognized methods, including Iterative [30, 31], Self-Ask [32], Self-RAG [33], and FlARE [34]. For
each of these methods, we support flexible adjustments to the retrievers and generators to test their
performances in different scenarios.

3.3 Datasets and Corpus

3.3.1 Datasets

As shown in Table 2, we collects and pre-processes 32 benchmark datasets, covering the majority
of the datasets utilized in RAG works. We researched and listed the sources of answers in each
dataset for reference. For most datasets, the knowledge comes from Wikipedia, underscoring its
importance in RAG tasks. All datasets have been formatted into a unified JSONL structure, typically
encapsulating four fields: ID, question, golden answer, and metadata. For multiple-choice datasets
like MMLU [35, 36] and OpenBookQA [37], an additional "choices" field is provided as options. We
have hosted the processed datasets on HuggingFace for easy access. Details on dataset processing
can be found in the appendix.

Besides the datasets, we offer a variety of dataset filtering tools for user to filter the entire dataset.
For instance, user can choose a certain number of samples from the entire dataset, either randomly or
sequentially for evaluation, or select a subset of the dataset through the dataset’s metadata. These
methods are unified within a dataset loading function, which is accessible through a standard interface.
Users are also allowed to implement their own filtering functions.

3.3.2 Corpus

Besides datasets, the corpus used for retrieval, also known as the knowledge base, is another vital
preparation of experiments. In various research works, the following two types of corpus are often
used: Wikipedia dump and MS MARCO passage.
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Table 2: Summary of datasets. FlashRAG currently includes a variety of datasets of different tasks.
The sample size of each dataset and the knowledge source of the answer are listed as references. "-"
indicates that the knowledge source is common sense. The ∗ symbol represents that the task of this
dataset has been modified to fit the RAG scene.

Task Dataset Name Knowledge Source # Train # Dev # Test
NQ [38] Wiki 79,168 8,757 3,610
TriviaQA [39] Wiki & Web 78,785 8,837 11,313
PopQA [40] Wiki / / 14,267
SQuAD [41] Wiki 87,599 10,570 /
MSMARCO-QA [42] Web 808,731 101,093 /
NarrativeQA [43] Books, movie scripts 32,747 3,461 10,557
WikiQA [44] Wiki 20,360 2,733 6,165
WebQuestions [45] Google Freebase 3,778 / 2,032
AmbigQA [46, 38] Wiki 10,036 2,002 /
SIQA [47] - 33,410 1,954 /
CommenseQA [48] - 9,741 1,221 /
BoolQ [49] Wiki 9,427 3,270 /
PIQA [50] - 16,113 1,838 /

QA

Fermi [51] Wiki 8,000 1,000 1,000
HotpotQA [52] Wiki 90,447 7,405 /
2WikiMultiHopQA [53] Wiki 15,000 12,576 /
Musique [54] Wiki 19,938 2,417 /

Multi-Hop QA

Bamboogle [32] Wiki / / 125
ASQA [55] Wiki 4,353 948 /Long-Form QA
ELI5 [56] Reddit 272,634 1,507 /
MMLU [35, 36] - 99,842 1,531 14,042
TruthfulQA [57] Wiki / 817 /
HellaSwag [58] ActivityNet 39,905 10,042 /
ARC [59] - 3,370 869 3,548

Multiple-Choice

OpenBookQA [37] - 4,957 500 500
AIDA CoNLL-YAGO [60, 61] Wiki & Freebase 18,395 4,784 /Entity-linking
WNED [62, 61] Wiki / 8,995 /
T-REx [63, 61] DBPedia 2,284,168 5,000 /Slot filling
Zero-shot RE [64, 61] Wiki 147,909 3,724 /

Fact Verification FEVER [65, 61] Wiki 104,966 10,444 /
Dialog Generation WOW [66, 61] Wiki 63,734 3,054 /

Open-domain Summarization∗ WikiAsp [67] Wiki 300,636 37,046 37,368

Wikipedia passages: The Wikipedia passages comprises a collection of documents from English
Wikipedia entries, serving as the knowledge source for many datasets, such as KILT [61]. It was first
introduced as a retrieval corpus in DrQA [68], and subsequently utilized in previous works [12, 1, 34].
Acquiring the Wikipedia dump involves a complex process, including downloading Wikipedia
snapshots in XML format, cleaning the text to remove redundant HTML tags and extracting the
corresponding textual content, and segmenting the entire document text into individual passages for
retrieval.

For various reasons, there are several different versions of Wikipedia used in existing work, increasing
the difficulty of reproduction. To address this, we provide easy-to-use scripts for automatically
downloading and pre-processing any required Wikipedia version. Additionally, we offer various
chunking functions to support custom segmentation methods, enabling researchers to align their
corpus with others’ works or to establish a standard corpus for use. We also provide the widely
utilized Wikipedia dump presented by DPR from December 20, 2018, as a fundamental resource.

MS MARCO passages [42]: The MS MARCO passage includes 8.8 million passages, sourced
from Bing search engine retrievals. Compared to the Wikipedia dump, it contains fewer passages.
Fortunately, this corpus has undergone pre-processing, allowing for its direct use. Since this dataset
is already hosted on Hugging Face and matches our required format, we provide its original link for
ease of download.
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3.4 Evaluation

Our library supports a variety of evaluation metrics to assess the quality of RAG process. Depending
on the subject of evaluation, our supporting metrics can be divided into two categories: retrieval-aspect
metrics and generation-aspect metrics.

Retrieval-aspect metrics: To evaluate the quality of the retrieval, we support four metrics including
recall@k, precision@k, F1@k, and mean average precision (MAP). Unlike assessing standalone
retrieval systems, the documents retrieved in the RAG process often lack golden labels (e.g., related
or unrelated tags). Therefore, we facilitate these evaluations by considering whether the golden
answer is present within the retrieved documents as an indicator of relevance. Other types of metrics
can be obtained by inheriting existing metrics and modifying the calculation methods inside.

Generation-aspect metrics: For evaluating the quality of generation, we support five metrics
including token-level F1 score, exact match, accuracy, BLEU [69], and ROUGE-L [70]. Moreover,
we support evaluating the number of tokens used in generation, to facilitate the analysis of the overall
process cost.

To accommodate custom evaluation metrics, our library provides a metric template for users to
implement. As our library automatically saves intermediate results of the execution, users can
conveniently evaluate the outcomes produced by intermediate components. For example, users might
compare the number of tokens before and after the refiner runs, or the precision differences between
multiple rounds of retrieval results.

4 Experimental Result and Discussion

FlashRAG can enable researchers to benchmark RAG methods, evaluate their own RAG approaches,
and conduct investigations within the RAG field. To demonstrate the capabilities of FlashRAG, we
conducted several experiments for providing reproducible benchmarks and exploration.

Experimental Setup. In our main experiment, we employed the latest LLAMA3-8B-instruct [71]
as the generator and the E5-base-v2 as the retriever, utilizing Wikipedia data from December 2018
as the retrieval corpus. The max input length of generator model is set to 4096. For each query,
we retrieved five documents. For approaches not utilizing custom-defined prompts, we applied a
consistent default prompt, which is shown in the appendix. Methods requiring specific settings
and hyperparameters are marked with asterisks in our tables, with their specific configurations
noted in the appendix. All experiments are carried out on 8 NVIDIA A100 GPUs. We conducted
experiments on six common datasets: Natural Questions(NQ) [38], TriviaQA [39], HotpotQA [52],
2WikiMultihopQA [53], PopQA [40] and WebQuestions [45]. We use exact match as the metric on
NQ,TriviaQA,Web Questions, and token level F1 as the metric on HotpotQA, 2WikiMultihopQA and
PopQA.

Methods. We conducted experiments on all supported RAG methods. These methods are categorized
based on the RAG component they primarily focused on optimizing: AAR [72] aims at optimizing
the retriever; LongLLMLingua [20], RECOMP [18], and Selective-Context [21] focus on the refiner
to compress input prompts; Ret-Robust [73] and REPLUG [28] focus on optimizing the generator
and its related decoding methods; SKR [10] enhances the judger that decides whether to retrieve for a
query; SuRe [29], Self-RAG [33], FLARE [34], Iter-RetGen [30], and ITRG [31] optimize the entire
RAG flow, including multiple retrievals and generation processes.

4.1 Main results

The main results of various methods are shown in Table 3. Overall, RAG methods significantly
improve compared to the direct generation baseline. Standard RAG, with advanced retrievers and
generators, is a strong baseline, performing well across six datasets. AAR improves retrievers by
training the contriever model, and get comparable result to the e5 baseline on multiple datasets.
For refiners, all three methods show notable improvements. Refiners perform especially well on
multi-hop datasets like HotpotQA and 2WikiMultihopQA. This is likely because complex problems
lead to less accurate document retrieval, creating more noise and requiring refiner optimization.
In generator optimization method , Ret-Robust uses the Llama2-13B model with a lora module,
greatly enhancing the generator’s understanding of retrieved documents and outperforming other
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Table 3: The performance evaluation of RAG methods was carried out on three datasets. Optimize
component represents the primary component optimized by the method, while flow indicates
optimization of the entire RAG process. Methods marked with ∗ denote the use of a trained generator.

Optimize Pipeline NQ TriviaQA HotpotQA 2Wiki PopQA WebQAMethod
component type (EM) (EM) (F1) (F1) (F1) (EM)

Naive Generation - Sequential 22.6 55.7 28.4 33.9 21.7 18.8
Standard RAG - Sequential 35.1 58.8 35.3 21.0 36.7 15.7
AAR [72] Retriever Sequential 30.1 56.8 33.4 19.8 36.1 16.1
LongLLMLingua [20] Refiner Sequential 32.2 59.2 37.5 25.0 38.7 17.5
RECOMP-abstractive [18] Refiner Sequential 33.1 56.4 37.5 32.4 39.9 20.2
Selective-Context [21] Refiner Sequential 30.5 55.6 34.4 18.5 33.5 17.3
Ret-Robust∗ [73] Generator Sequential 42.9 68.2 35.8 43.4 57.2 9.1
SuRe [29] Flow Branching 37.1 53.2 33.4 20.6 48.1 24.2
REPLUG [28] Generator Branching 28.9 57.7 31.2 21.1 27.8 20.2
SKR [10] Judger Conditional 25.5 55.9 29.8 28.5 24.5 18.6
Self-RAG∗ [33] Flow Loop 36.4 38.2 29.6 25.1 32.7 21.9
FLARE [34] Flow Loop 22.5 55.8 28.0 33.9 20.7 20.2
Iter-RetGen [30], ITRG [31] Flow Loop 36.8 60.1 38.3 21.6 37.9 18.2
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Figure 2: The results of standard RAG process under different number of retrieved documents and
retrievers. Left: Average results on six datasets using three different retrievers with varying numbers
of retrieved documents. Right: Individual results on six datasets using E5 as the retriever.

training-free methods. The effectiveness of optimizing the RAG process varies by dataset. On simpler
datasets like NQ and TriviaQA, FLARE and Iter-RetGen are on par with or slightly below standard
RAG. However, on complex datasets that requiring multi-step reasoning, like HotpotQA, there are
significant improvements over the baseline. This suggests adaptive retrieval methods are more suited
for complex problems, while on simpler tasks, they may incur higher costs with only modest benefits.

4.2 Impact of Retrieval on RAG

In RAG process, the retriever is a crucial component that significantly impacts the results. The
quantity and quality of input retrieved documents determine the final answer. However, due to
considerations such as cost, existing research works often employs a fixed retriever and a fixed
number of retrieved documents, neglecting exploration in this area. To thoroughly investigate the
influence of the retrieval process on overall RAG results, we conducted a series of experiments.

In Figure 2, we present the results for varying numbers of retrieved documents. As shown in the left
part of Figure 2, the overall performance is optimal when the number of retrieved documents is 3 or
5. Both an excessive and insufficient number of retrieved documents lead to a significant decrease in
performance, with a drop of up to 40%. This trend is consistent across different retrievers, including
both dense and sparse retrieval methods. Additionally, we observe that when the number of retrieved
documents is large, the results of the three different quality retrievers converge. In contrast, for the
top1 results, there is a substantial gap between dense methods (E5, Bge) and BM25, indicating that
the fewer documents retrieved, the greater the impact of the retriever’s quality on the final result.
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In the right part of Figure 2, we plot the impact of the number of retrieved documents on different
datasets. It can be seen that on most datasets, using top3 or top5 retrieved results yields the best
performance, suggesting that this may represent a good balance between the quality of retrieved
documents and noise.

5 Limitations

Our toolkit currently has some limitations, which we plan to gradually improve in the future.
(1) Although we strive to encompass many representative RAG methods, due to time and cost
considerations, we have not included all existing RAG works. This may require contributions from
the open-source community in the future. (2) Our toolkit lacks support for training RAG-related
components. We considered training during the initial design, but given the diversity of training
methods and the presence of many repositories specifically dedicated to the training of retrievers and
generators, we did not include this part. In the future, we may add some helping scripts to provide
some assistance for researchers’ training needs.

6 Conclusion

To address the challenges researchers face in replicating studies and the high development costs
associated with research in the RAG domain, we introduce a modular RAG toolkit. Our toolkit
includes comprehensive RAG benchmark datasets, implementations of advanced RAG methods,
and code for pre-processing corpus and multiple evaluation metrics. It enable researchers to easily
reproduce existing RAG methods, develop new algorithms, and focus on optimizing their research.
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